Gestion du cycle de vie du système d'information industriel basée sur les normes et méthodes de gestion industrielles

Club18 le 14/09/2006

Jean Vieille

www.psynapses.com

j.vieille@psynapses.com

Agenda

- Information & Systems
- Industrial Enterprise
- The Information Factory
- Combining Industrial & Information Systems
- CCM Process
- Improvement

Information & Decision

- Information surrounds everything
 - Information might be the ultimate meta theory in Physics
 - Information might be the ultimate material component
- Changing the world, giving existence to something implies Decision
- Decision reveals information, makes it "concrete"
 - Information allows decision, which triggers action
 - Information is also involved in decision and action
 - The outcome of a decision is a new information leading to subsequent action, and ultimately changing the physical world

Decision is the Key – the OODA Loop

Each arrow involves information Observe Orient Decide Act Implicit Implicit Guidance Guidance & Control & Control Unfolding Cultural Circumstances Traditions Feed Genetic Heritage Analysis & Synthesis Observations Action Decision Feed Feed Forward (Hypothesis) (Test) Forward Forward Outside Information New Information Previous Experience Unfolding Interaction With Environment Unfolding Feedback

Feedback

http://en.wikipedia.org/wiki/OODA_Loop

John Boyd's OODA Loop

Interaction With

Environment

Information and Time

Information and Time

- Real time information : knowledge of the current situation
- History information : memory of the past experiences
- Prospective information : extrapolation of the future based on history, RT information and acquired knowledge
- Time compensates for the lack of universal, extensive knowledge, information

Information is Knowledge: Time is Ignorance... (Alexei Grinbaum)

Information handling and processing

- Information is supported by numerous media
 - Sound, vision, smell, telepathy, waves, Quanta...
 - Electronics is an additional media
 - Computer HW and SW is only one part of the information system.
- The role of information system is to reveal information to physical observers (other computers, humans)
 - Computing an « optimal schedule » is revealing a better way of arranging the activity program (the best is unknown because of the lack of computation power)

IIS and Information Processing

Information system deals with several dimensions

- Real time processing, Transactional processing, data storage, knowledge management, analytics, modelling, simulation and optimization, collaboration...
- MRP, DBR or PID are examples of computational methods to achieve particular decision processes
 - Operations planning
 - Operations optimal scheduling
 - Physical measurement control

Information system

- can learn the corresponding algorithms:
 - explicit knowledge capture
- can perform them
 - Apply / enforce captured knowledge

Value of the information system

Referring to IS in terms of HW/SW investment

- HW/SW are not the only way of achieving the requested information support, other media might satisfy the needs as well
- Though information is critical, an information system on its own has no global value
 - Though local performance can be measured
- The information system value is measured through the decision processes it supports and the contribution of these processes to the industrial enterprise success

How to assess the IS contribution to the Enterprise success ?

- It is the purpose of Strategic guidance and Master Plan CCM sub-processes
 - What if the IS would not perform a particular function?
 - What if it performs the function optimally?
 - How much are we going to progress because of this particular function?
 - How the IIS enables or prevents the implementing of our strategic roadmap?

Agenda

- Information & Systems
- Industrial Enterprise
- The Information Factory
- Combining Industrial & Information Systems
- CCM Process
- Improvement

Enterprise Stakeholders

Stakeholders Power on the Enterprise

Stakeholders	Want to get more	With less Effort
Employees	Wages and other benefits	Work and Effort
Customers	Value	Cost of Ownership
Community	Life Quality	Self Annoyance
State	Taxes	Controls
Suppliers	Order volume and prices	Cost of Sales
Shareholders	Benefit	Invested Capital

Industrial Enterprise Structure

- An industrial enterprise's purpose is to make money by selling physical, tangible entities:
 - products, goods, energy
- The VAD (Direct Added Value) concept splits the Enterprise in 3 main entities (Paul-Louis Brodier)
 - The Shareholders who expect revenue from their investment
 - The Company owned by the Shareholders, managing the shareholders capital and providing financial resources to the Business
 - The Business owned by the Company, leveraging Company's capital

2 main Business Processes and production system

An industrial Business has 2 main processes

- The Value Chain
 - Creates Value that is perceived by the customers making requested products
- The Sales Process
 - Creates Value for the capital shareholders by connecting the Value Chain to the Market

Value Chain process

- Create value that is perceived by the customers making requested products
- Handles physical flows and transformation
 - Includes facilities for processing physical entities (material, goods and energy)
 - Involves internal and external resources (sub-contracting)
- Is at the bottom of the decision hierarchy of an Industrial Enterprise
 - Receives orders from Business
 - Has capabilities and capacities able to fulfil these orders
- Has its own domain of responsibility
 - To serve the business diligently
 - To manage its resources efficiently

The production system is the main component of the Value Chain

Sales Process

The Sales Process

- Creates Value for the capital shareholders by connecting the Value Chain to the Market
- Includes all activities which are not related to physical aspects of production, mainly
 - Marketing, R&D
 - Sales, Purchasing
 - Planning
- Directs the Value Chain
 - Defining its mission (what to do, how to do, what to use)
 - Supervising its activities (for what it is important for the sales process)
 - Monitoring its performance from the sales process perspective

At the appropriate level of detail and freedom

Enterprise global model

Agenda

- Information & Systems
- Industrial Enterprise
- **■** The Information Factory
- Combining Industrial & Information Systems
- CCM Process
- Improvement

The Industrial Factory

The Information Factory

Industrial vs Information Factory

- We just process data into information instead of raw material to finish products
- Decision need replaces product demand
- Automation is a specific case as the decision is made by the information system itself.
 - This is generally the case when the IIS supports transformation processes
 - This can happen in other processes too
 - Automation addresses mostly internal processes
 - It can also apply externally i.e. when the product demand is self managed by sophisticated CRM (external demand) or Kanban (internal demand)

IIS as a information factory

An information system processes the information the same way an industrial facility makes products, involving 3 lifecycles

- Resources Engineering corresponds to:
 - the actual HW/SW solution and its inherent / implemented information processing capabilities = Information services (Corresponds to the manufacturing facility itself, including machinery, material, personnel)
- Product Development corresponds to :
 - Definition of the information processing requirements including Information services and their usage scenarios as Information Processes
- Production Planning & Scheduling corresponds to :
 - Run time usage of defined information services and processes

ISA88/95 production system life cycles

Information system life cycles

The Information Factory has specifics....

The performance of an industrial factory can be simply measured by its profit

- For an industrial business, the information factory does not produce value
 - IIS only supports and serves the value making processes
- One way to assess the Information Factory performance is considering its users satisfaction: this is true at run time
 - Satisfied users means that the provided functions perform appropriately
 - Concerns "IT Resource Development" and "Run-Time information Processing" lifecycles
- That's not sufficient :
 - "Good" functions may not bring value to business after all
 - Functions for improving business bottom line may be missing, with nobody realizing the lack
 - Concerns "Information Processing Definition" lifecycle

Business vs Industrial Information Systems

IIS vs BIS

- Business Information System supports the Sales Process which is informational by essence – BIS is part of the process
 - Sales Process is not related to facilities layout
 - BIS shall be built on the Enterprise specific practices, decision processes and roles
- Industrial Information System supports the Value Chain Process which is physical by essence
 - All Industrial information systems must be customized to match the supported specific physical facilities
 - IIS shall be build on the physical production system framework the Enterprise physical model

IIS – Industrial Information System Scope

Information system: no longer THE framework

IT in Industry is still in infancy

Still far from original intents. Just compare to the Internet public use

Control systems

Currently the best achievement Mandatory real time Flexibility in operations led to "flexible" control systems - ISA88 forces the information system to hang on the actual facility

Business systems

- Most BIS still based on software with preconfigured functions & processes based on common practices
- SOA architectures slowly come up
 - Yet confined within proprietary solution for improving maintenance and reliability
- Customer still need to learn their IT system,
 - though this should be the opposite
- Flexibility in business systems (BIS) is inexistent
- What about "MES", extended control systems?

Agenda

- Information & Systems
- Industrial Enterprise
- The Information Factory
- **Combining Industrial & Information Systems**
- CCM Process
- Improvement

Combining Production & Information Systems, BIS & IIS

Combining Production / Industrial Information Systems

- Production System as a physical entity is the Framework (ISA88)
 - Physical hierarchy corresponds to Decision hierarchy
 - Any Information service or process is embedded within a specific Equipment entity, at any level
 - IIS doesn't exist by itself in the vacuum...
 - Information system is a supporting system, not a leading entity
- Any part of the production system might need IIS support
 - Or can live without it

Physical & Decisional hierarchy

Equipment Entity embeds Equipment & Information

Physical Equipment Equipment **Entity Operation Management (MES) Execution Control** (Recipes / Routings) **Information Equipment Control** (Automation) Processing Instruments, sensors, actuators **Basic, Coordination & Procedural Control**

Equipment Entity – Low level example

Equipment Entities – High Level Example

Equipment Entities – High Level Example

Agenda

- Information & Systems
- Industrial Enterprise
- The Information Factory
- **Combining Industrial & Information Systems**
- CCM Process
- Improvement

What is CCM

Control Chain Management® is a process to:

- Build and maintain the IIS
 - Building the Information Factory, selecting and installing software solutions
- Define and design the information processing requirements
 - Business, execution, and transformation processes support requirement
 - Software components design and mapping
- Plan & Deploy the IIS
 - Managing IIS master plan and deployment
- Improve continuously
 - IIS evolution tied to strategic directions, user feedback and technology

CCM process overview

1. SGU - Strategic Guidance Get and interpret Directions from Top Management

2. MPL - Master Plan
Develop, maintain and monitor IIS
development planning

3. FRP -Functional Repository

Develop and maintain global Information
Processing /
Services Definition

4. TRP - Technical Repository

Implement information processing / services capabilities from FRP definitions

Develop and maintain global Technical

components

5. DPL Deployment Projects

Build, and maintain actual systems by implementing technical components (System engineering)

CCM / Information Factory Relationship

"CCM" Tools

Control Chain Management

Agenda

- Information & Systems
- Industrial Enterprise
- The Information Factory
- Combining Industrial & Information Systems
- CCM Process
- Improvement

Improvement Areas

- Information System as an Information Factory
 - Information Processing Definition
 - IT Resources Development
 - Run-Time Information Processing
- CCM as a process
 - How Industrial IT performs within the Enterprise

Improving the Information Factory

VAD, Theory of Constraints

- The Information Factory shall prioritize and focus on supporting the most constraining processes regarding the Enterprises Goal of making more Money
- It shall provide relevant information to help reaching the Enterprises Goal of making more Money

Lean Management

- The Information Factory has to consider the client most valuable service in the most responsive way
- The information Factory eliminates "Mudda", unneeded features and complexity

Six Sigma

Quality of Information features provided by the Information Factory to its clients (users) are constantly monitored and improved

Improving the CCM Process

VAD Theory of Contraints

- Value the Information Technology Department activity
- Sets IT Objectives

Lean Management

- Keep the process simple and responsive
- Six Sigma
 - Monitor and improve sub-processes performance
 - Monitor and improve sub-process links
- Maturity management

CMMI / SEI operational framework

Policies

"Laws" or "regulations" that govern or constrain operations

Standards

"Operational definitions" or "acceptance criteria"

Constrain the process

Process

Describes "what happens" within the organization to build products that conforms to the standards in accordance with the policies of the organization

Is implemented by

Procedure

Describes "how-to" or step by step instructions that implement the process

The Software
Engineering Institute
(SEI) is a federally
funded research and
development center
sponsored by the U.S.
Department of Defense
and operated by
Carnegie Mellon
University.
http://www.sei.cmu.edu/
cmmi/

Is supported by

Training/Methods

Knowledge/skills required to use a procedure

Tools

Automated support needed to implement the procedure

MERCI!

